Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms
نویسندگان
چکیده
Field crop yield prediction is crucial to grain storage, agricultural field management, and national agricultural decision-making. Currently, crop models are widely used for crop yield prediction. However, they are hampered by the uncertainty or similarity of input parameters when extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing are the most effective methods for field yield estimation. In this study, the World Food Studies (WOFOST) model is used to simulate the growing process of spring maize. Common assimilation methods face some difficulties due to the scarce, constant, or similar nature of the input parameters. For example, yield spatial heterogeneity simulation, coexistence of common assimilation methods and the nutrient module, and time cost are relatively important limiting factors. To address the yield simulation problems at field scale, a simple yet effective method with fast algorithms is presented for assimilating the time-series HJ-1 A/B data into the WOFOST model in order to improve the spring maize yield simulation. First, the WOFOST model is calibrated and validated to obtain the precise mean yield. Second, the time-series leaf area index (LAI) is calculated from the HJ data using an empirical regression model. Third, some fast algorithms are developed to complete assimilation. Finally, several experiments are conducted in a large farmland (Hongxing) to evaluate the yield simulation results. In general, the results indicate that the proposed method reliably improves spring maize yield estimation in terms of spatial heterogeneity simulation ability and prediction accuracy without affecting the simulation efficiency.
منابع مشابه
Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter
Regional crop yield prediction is a significant component of national food security assessment and food policy making. The crop growth model based on field scale is limited when it is extrapolated to regional scale to estimate crop yield due to the uncertainty of the input parameters. The data assimilation method which combines crop growth model and remotely sensed data has been proven to be th...
متن کاملPreliminary Study of Soil Available Nutrient Simulation Using a Modified WOFOST Model and Time-Series Remote Sensing Observations
The approach of using multispectral remote sensing (RS) to estimate soil available nutrients (SANs) has been recently developed and shows promising results. This method overcomes the limitations of commonly used methods by building a statistical model that connects RS-based crop growth and nutrient content. However, the stability and accuracy of this model require improvement. In this article, ...
متن کاملRegional winter wheat yield prediction by integrating MODIS LAI into the WOFOST model with sequential assimilation technique
In this study, a regional winter wheat yield prediction method was developed by integration of time series of Moderate-Resolution Imaging Spectroradiometer MODIS LAI products (MOD15A2) with WOrld FOod STudies (WOFOST) model through Ensemble Kalman Filter (EnKF) algorithm at the regional scale in the Hengshui District, Hebei province in China. WOFOST model was selected as the crop growth dynamic...
متن کاملDynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series Data
The high temporal resolution (4-day) charge-coupled device (CCD) cameras onboard small environment and disaster monitoring and forecasting satellites (HJ-1A/B) with 30 m spatial resolution and large swath (700 km) have substantially increased the availability of regional clear sky optical remote sensing data. For the application of dynamic mapping of rice growth parameters, leaf area index (LAI...
متن کاملImpact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016